Using the MWC model to describe heterotropic interactions in hemoglobin

نویسندگان

  • Olga Rapp
  • Ofer Yifrach
چکیده

Hemoglobin is a classical model allosteric protein. Research on hemoglobin parallels the development of key cooperativity and allostery concepts, such as the 'all-or-none' Hill formalism, the stepwise Adair binding formulation and the concerted Monod-Wymann-Changuex (MWC) allosteric model. While it is clear that the MWC model adequately describes the cooperative binding of oxygen to hemoglobin, rationalizing the effects of H+, CO2 or organophosphate ligands on hemoglobin-oxygen saturation using the same model remains controversial. According to the MWC model, allosteric ligands exert their effect on protein function by modulating the quaternary conformational transition of the protein. However, data fitting analysis of hemoglobin oxygen saturation curves in the presence or absence of inhibitory ligands persistently revealed effects on both relative oxygen affinity (c) and conformational changes (L), elementary MWC parameters. The recent realization that data fitting analysis using the traditional MWC model equation may not provide reliable estimates for L and c thus calls for a re-examination of previous data using alternative fitting strategies. In the current manuscript, we present two simple strategies for obtaining reliable estimates for MWC mechanistic parameters of hemoglobin steady-state saturation curves in cases of both evolutionary and physiological variations. Our results suggest that the simple MWC model provides a reasonable description that can also account for heterotropic interactions in hemoglobin. The results, moreover, offer a general roadmap for successful data fitting analysis using the MWC model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global allostery model of hemoglobin. Modulation of O(2) affinity, cooperativity, and Bohr effect by heterotropic allosteric effectors.

The O(2) equilibria of human adult hemoglobin have been measured in a wide range of solution conditions in the presence and absence of various allosteric effectors in order to determine how far hemoglobin can modulate its O(2) affinity. The O(2) affinity, cooperative behavior, and the Bohr effect of hemoglobin are modulated principally by tertiary structural changes, which are induced by its in...

متن کامل

Heterotropic Effect of β-lactam Antibiotics on Antioxidant Property of Haptoglobin) 2-2(-Hemoglobin Complex

Haptoglobin (Hp) is a mammalian serum glycoprotein showing a genetic polymorphism with three types, 1-1, 2-2 and 1-2. Hp appears to conserve the recycling of heme-iron by forming an essentially irreversible but non-covalent complex with hemoglobin which is released into the plasma by erythrocyte lysis. As an important consequence, Haptoglobin-Hemoglobin complex (Hp-Hb) shows considerable antiox...

متن کامل

Heterotropic Effect of β-lactam Antibiotics on Antioxidant Property of Haptoglobin) 2-2(-Hemoglobin Complex

Haptoglobin (Hp) is a mammalian serum glycoprotein showing a genetic polymorphism with three types, 1-1, 2-2 and 1-2. Hp appears to conserve the recycling of heme-iron by forming an essentially irreversible but non-covalent complex with hemoglobin which is released into the plasma by erythrocyte lysis. As an important consequence, Haptoglobin-Hemoglobin complex (Hp-Hb) shows considerable antiox...

متن کامل

Modeling thermodynamic properties of electrolytes: Inclusion of the mean spherical approximation (MSA) in the simplified SAFT equation of state

In this work, an equation of state has been utilized for thermodynamic modeling of aqueous electrolyte solutions. The proposed equation of state is a combination of simplified statistical associating fluid theory (SAFT) equation of state (similar to simplified PC-SAFT) to describe the effect of short-range interactions and mean spherical approximation (MSA) term to describe the effect of long-r...

متن کامل

The Monod-Wyman-Changeux allosteric model accounts for the quaternary transition dynamics in wild type and a recombinant mutant human hemoglobin.

The acknowledged success of the Monod-Wyman-Changeux (MWC) allosteric model stems from its efficacy in accounting for the functional behavior of many complex proteins starting with hemoglobin (the paradigmatic case) and extending to channels and receptors. The kinetic aspects of the allosteric model, however, have been often neglected, with the exception of hemoglobin and a few other proteins w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017